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1.0 Final Report Summary

3 Technical Problem

The technical problem addressed by this contract was to
determine the feasibility of exploiting the emerging mathe-
matical theory of wavelets in radar system applications.
The work to be done was divided into three tasks.
1. Perform a preliminary systems benefit study. Address

the complete radar processing problem including the
applicability of wavelets to the various processing
elements: prescreener, fast Fourier transform (FFT),IR classifier, and automatic target recognizer (ATR).

2. Define and develop appropriate wavelet methods for radar
applications.

3. Determine the stability of the wavelet transform image.
Make a comparison of wavelet transforms and FFT signatures
for each of three targets: a set of calibrated corner
reflectors of known radar cross section and spacing, anI M60 tank, and an M35 truck.

Three specific potential applications of wavelets methods to
radar systems were identified for investigation.
1. Use wavelets to transform the data that forms the input to

the radar's ATR algorithms.
2. Modify a typical radar system so that if a wavelet

transform (which is faster than an FFT) replaces the FFT
(which is currently used), the output is still a high
range resolution target profile.

3. Develop a wavelet approximation to an FFT such that the
wavelet approximation is sufficiently accurate and faster
than an FFT.

Methodology

In this study, the recent mathematical theory of
wavelets was introduced to the engineering problems of
designing radar systems, radar processors, and radar
algorithms. The goal was to make radars more efficient or
more effective by the use of wavelets. To understand why
particular possible applications of wavelets to radars were
examined, it is necessary to understand some background
information on both radars and wavelets theory. These topics
are discussed briefly in the following paragraphs. Also,Ithe Martin Marietta radar data that was used in this study
is described, and some description is given of typical
processing methods for this data.

Modern radar systems transmit and receive frequency-
stepped radio frequency (RF) waveforms. The radar signal
processor transforms the received data by using an FFT.
Since the FFT forms a matched filter with the frequency-
stepped waveforms, the vector whose components are the
magnitudes of the complex data output from the FFT forms a
high range resolution profile (HRRP) of the objects in the
radar beam. These HRRPs are the inputs to the radar's ATR
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processor. Both FFT and ATR calculations are computation
intensive and impose difficult and costly requirements on the
radar signal processor. Wavelet methods were examined for
potential efficiency improvements in FFT or ATR processors as
well as for potential ATR performance improvements.

Investigations utilized Martin Marietta's short pulse,
frequency-stepped, fully calibrated 35 Ghz radar data. This
data utilized two transmit (right hand circular and left hand
circular) and two receive (right hand circular and left hand
circular) radar polarizations (right and left circular) and
resulted in a complete polarization set of four receive-
transmit pairs. Transmitting right or left and receiving the
opposite yields "odd" polarized returns. If the receiver has
the same polarization sense as the transmitter, the return is

an "even" polarization. The data is coherent which allows
creation of HRRPs. Figures 3.3 through 3.6 show odd and even
HRRPs. There are radar looks at an M60 tank and an M35 truck
at every hundredth of a degree of aspect in this data set. A
radar look consists of 64 coherent, frequency stepped time
samples for the four receive-transmit polarization pairs.
Each polarization of each radar look can be processed through
an FFT to produce an HRRP of the vehicle in the radar's view.
Compactly supported wavelets are a family of recently
discovered (1986) mathematical functions that have been
successfully applied to problems in image compression, audio
compression, vision analysis, and transient signal analysis.
The wavelet methods used on this contract employed compactly
supported wavelets that generated orthonormal bases. Par-
ticular wavelets used were denoted D2, D4, D6, and D8 in
honor of Ingrid Daubechies, who developed the theory of
orthonormal bases of compactly supported wavelets. The D2
wavelet is also known as the Haar wavelet. A wavelet basis
consists of a "scaling function" 0(x) that is the solution to
a recursion equation derived from orthogonal subspace
projection mathematics, a basic wavelet function woo(x) that
is derived from the scaling function, and a countably
infinite collection of wavelet functions Wjk(X) that are
dilations (frequency changes) and translations (time shifts)
of the basic wavelet function. The recursion equation is

Igiven by 0(x) = 1CkO(2x-k)
and the wavelet functions are defined by

Woo (X) = J(-1)kc -ko(2x-k)
W jk(X) = 2J/ 2 woo(2ix-k).

Some specific linear operations involving the recursion
coefficients Ck can compute wavelet coefficients and wavelet
approximations to functions very rapidly since only a few of
the Ck are nonzero.

Not all wavelets have compact support nor do they all
generate orthogonal bases. However, throughout this report
the terms wavelets and compactly supported wavelets are used
interchangeably, and wavelet bases are assumed to be orthog-

onal. Results presented were produced using specific
compactly supported wavelets.

!2
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Technical Results

Results clearly demonstrate that, under certain circum-
stances, wavelets methods can improve radar system perform-
ance. These wavelet results and their radar system appli-
cations are summarized below and described in detail in
Sections 3.2, 3.3, 3.4, and 3.5 of this report.

The radars considered in this study were millimeter wave
(MMW) radars, but results obtained are also applicable to
radars of other wave lengths. MMW radars are typically
either pulse radars with short radar pulse lengths or
frequency modulated continuous waveform (FMCW) with long
radar pulse lengths. There is a major difference between
these two types of MMW radars as far as wavelets applications
are concerned. This is due to the fact that if one wants a
given range resolution in the HRRP, one must compute an FFT
of very large dimension for an FMCW radar but a relatively
small FFT for a pulse radar.

The most significant application of wavelet methods to
radars involves the radar's ATR algorithms' capability and
complexity. The data base of full polarization, calibrated,
coherent MMW radar returns from tanks and trucks was used for
this study. This data base also contained radar looks at the
calibration reflectors consisting of a single trihedral and
a pair of dihedrals of known radar cross section. The major
goal was to reduce the dimension of the HRRP radar data
vector without losing information that is important to the
ATR. There are three distinct reasons why this dimension
reduction could improve the ATR.
1. The reduced dimension that serves as the input to the ATR

may allow use of a more complex and effective (higher
order polynomial classifier, for example) classifier or
target-clutter discriminator algorithm within the
computational limitations of the ATR digital signal
processor.

2. Reduced dimension may make the choice of the type of ATR
classifier and/or target-clutter discriminator obvious;
consequently, ATR performance could be improved.

3. Even if reduced dimension does not suggest a change in
the type of classifier or discriminator algorithm, it may
greatly reduce the number of computations required
by the ATR thereby increasing the speed and decreasing the
hardware requirements of the ATR.

As a test case for the ability of wavelets to reduce
HRRP dimension, one feature - "target length" - was examined.
For this effort, Martin Marietta defined the problem and
monitored the results while our subcontractor, Aware, Inc.,
provided the wavelets expertise and produced the results.
Wavelet algorithms and typical target length estimation
techniques were applied to the radar HRRP data base. Results

showed that when appropriate wavelet methods were applied

I3



I
I

with the D4 or D6 wavelet basis, vector dimension could be
reduced by a factor of four with essentially no loss in
ability to estimate target length. The main results are
given in Section 3.3 and additional details are presented in
Section 4.0 and Appendix E.

Next a brief, two class target classification study was
conducted by Martin Marietta to see if it is feasible to
improve radar target classification signal processing by
wavelet methods, either by improving classifier percent
correct classification (PCC) in the presence of noise (added
to the very clean radar target data) or by decreasing the
number of computations required by the classifier processor,
or both. In this study, the features used by the classifier
were particular wavelet coefficients produced by the target
HRRP. Classifier overall PCC was improved in realistic
signal/interference situations by up to 6 percentage points,
and computations were decreased by a factor of 10. These
results clearly indicate that it is feasible to improve radar
classifier processors by wavelet methods. Details of this
study are given in Section 3.4.

A second application of wavelet methods to a radar
system consists of replacing the radar's FFT by a wavelet
transform (WT). This results in a more efficient processor
for two reasons. An FFT requires on the order of Nlog2(N)
multiplies, but a WT requires only on the order of N
multiplies. Also, an FFT uses complex*complex multiplies,
which requires 4 real multiplies, 1 add, and 1 subtract, but
the waveform proposed for the WT radar application is
processed by a WT with only real*real multiplies. The output
of the WT will still be an HRRP if the radar transmitter and
receiver can be modified so that the received, sampled
waveform data vector is a matched filter with the WT, just as
the current frequency stepped radar data vector is a matched
filter with an FFT. This wavelet radar application would
improve either pulse or FMCW radar digital processor effi-
ciency. Details of this WT radar application and an example
are given in Section 3.5.

Another wavelet radar application consists of using a
wavelet fast Fourier transform approximation (WFFT), derived
by Aware, Inc., instead of using an FFT. This procedure does
not require any modification to the radar transmitter or
receiver but does require changes in the radar digital
processor. A number of versions of WFFT's were examined.
The fastest version of a WFFT is faster than an FFT in
creating a target range profile if the target length (in
post-FFT cells) is less than one fourth of the FFT dimension.
In cases when the target would occupy more than one fourth of
the post-FFT cells, the FFT will be at least as fast as the
WFFT. Consequently, the WFFT does not appear to be useful
for typical MMW pulse radars but would be useful in typical
FMCW radars which sample relatively long waveforms to produce
the data vectors that are input to large FFTs (or WFFTs). A
discussion of this WFFT vs. FFT comparison follows in
Section 3.2. Additional details are given in Appendices B.2

I4
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and B.3.

* Further Research

This wavelets radar applications feasibility study has
pointed out several areas for further useful research.

Wavelet dimension reduction capabilities may improve
other radar ATR algorithms, either by improving stability
versus signal-to-interference and/or by decreasing compu-
tational complexity. Also, wavelets methods may prove even
more useful in two-dimensional ATR applications such as
synthetic array radar, infrared imaging, or electro-optical
imaging.

If there is an FMCW system whose targets are small in
length relative to the radar pulse length, this stuay
indicates that it would be appropriate for that system to
further investigate implementing WFFTs rather than FFTs.

Several questions remain concerning the possible use of
WTs to replace FFTs in a radar. What wavelet basis produces
the radar waveform that is most appropriate for transmission
and reception by a radar system such that the WT would output
HRRPs? Can such a system be built? Is the increased effi-
ciency of the WT (over the FFT) sufficient to offset the cost
of the changes required in the transmitter and receiver?

UAcknowledgement
We are indebted to Howard Resnikoff and Charles Smith

along with their staff at Aware, Inc. for their time and
effort expended in support of this contract. It was their
expertise in wavelet technology and their willingness to
entertain a myriad of fundamental questions which permitted
Martin Marietta to formulate and successfully complete a
meaningful feasibility study in applicability of wavelet
methods to radar systems.

Several sections (2.0 through 2.5, 3.2, 3.3, 4.0, and
the Appendices) are based on input received from Aware, Inc.
However, conclusions and results as they relate to the ATR

*classifier are solely those of Martin Marietta.
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2.0 Compactly Supported Wavelets

A major reason for conducting this study is the remarkable
results being obtained through the application of compactly
supported (zero outside a finite interval) wavelets to signal
processing. Compactly supported wavelets are a class of
mathematical functions that were discovered in 1986. Some of the
particular advantages of wavelet signal processing methods are:

o Wavelet transforms are computationally efficient. The
number of arithmetic operations required to perform a
wavelet transform is linearly proportional to the number of
input data points. The computational complexity of theI more traditional Fast Fourier Transform (FFT) is
proportional to the number of input data points times the
logarithm (base 2) of the number of input data points. For
large problems, the wavelet methods require only a fraction

-- of the number of operations required by the traditional
methods. This advantage increases as the problem size
increases. In addition, wavelet transform algorithms canIbe directly implemented in very large scale integration
(VLSI) logic devices, and they are fully parallelizable.

o Wavelet transform methods can analyze signals in both the
time and frequency domains. The relative resolution of the
time and frequency components can be flexibly adapted to
the problem at hand. The selection of the appropriateI] time-frequency resolution can be done upfront at system
design time or it can be accomplished with real-time
adaptive algorithms. The traditional Fourier transform
suffers from very poor (or nonexistent) time resolution.
This particularly limits its usefulness in the analysis of
time-limited (i.e., transient) signals. There have been
attempts to modify the Fourier technique in various ways to
overcome this limitation, but all of the methods introduce
some additional complexities and compromises. Wavelet
methods offer a very natural means to perform
time-frequency signal analysis.

o Wavelets provide the flexibility to choose a particular
wavelet function that is "customized" to the specific
application. This is possible since compactly supported
wavelets are an infinite family of complete orthogonal
basis functions. This flexibility to choose basis

I functions can not be matched with the Fourier transform for
it uses only a single set of basis functions - the complex
exponentials (i.e., the sine and cosine functions.)

Compactly supported wavelets are a complete and orthogonal
set of basis functions for the set of all finite energy discrete
signals. The wavelet transform is invertible, energy-preserving
and linear. The wavelet transform is a processing method which
analyzes both continuous streams of input data and blocks of data.
A multiplier 2 wavelet basis consists of a scaling function, a

6
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basic wavelet and a collection of smaller wavelets. The smaller
wavelets are created by "shrinking" the basic wavelet by a factors
of 2 and shifting (or translating) them by scaled integer
distances. Thus the collection of smaller wavelets are 1/2 and
1/4 and 1/8 (and so on) the size of the basic wavelet. Whenever

the "wavelet length" shrinks by a factor of two, the "wavelet
frequency" can be thought of as doubling. This shrinkage factor
is sometimes called scale or scale level. Wavelet basis functions
are all related by multiples of the constant ratio (2 : 1). The
basic wavelet is computed from the scaling function. The
selection of the scaling function determines all of the remaining
basis functions. A remarkable fact is that there are an infinite
number of scaling functions, each of which defines a complete
wavelet basis. This provides tremendous flexibility in selecting
basis functions which are appropriate for different systems.

In general, the computational complexity of wavelet methods
is O(n), which means that the computational complexity is of order
n. The efficiency is the direct result of the simplicity of the
wavelet transform process. The process starts by separating the
signal information in the smallest wavelets from information in
all the larger wavelets scales. Details are given in Section 2.4.
The output of the first stage is processed again by the same
method and is repeated for each successive scale. This recursive
structure reduces the amount of data to be processed at each
successive level by a factor of two which reduces the
computational cost for each successive transform level.
Information which varies rapidly over just a few data points is
separated from information which varies over many points. The
procedure is stopped at the largest wavelet of interest.

The outputs of the wavelet transform are coefficients which
represent the similarity of the signal (as a function of time) to
the wavelets of different shrinkage factors and times. The output
of a wavelet transform can be plotted on a grid that has time on
the x-axis (or t-axis) and shrinkage factor on the y-axis. This
grid is called phase space and is used to graphically display the
relationships between signal information at different shrinkage
factors and times.

It is helpful to compare and contrast the wavelet transform
with the well known Fourier transform. The Fourier transform is
also invertible, energy-preserving and linear. The Fourier basis
functions are orthogonal and complete for the entire set of finite
energy discrete signals.

The Fourier transform separates signal information by
frequency. The Fourier transform requires an a priori choice of
input data block size. The Fourier basis functions are constant
frequency complex exponential functions each of which persists as
long as the block size. The basis functions are uniformly spaced
in frequency. The frequencies are separated by a constant
interval rather than a constant ratio. Since all of the basis
functions are as long as the input data block, they all have the
same (lack of) time resolution. The output of a Fourier transform
contains information about how the energy in the signal is
distributed among the frequencies in the signal. However
information about how the energy is distributed in time, about

I



Iwhen it occurred, is not available in the Fourier transform
representation. All that can be inferred is that the frequency
was present somewhere in the block and what fraction of the signal
energy it accounted. The computational complexity of the fast
Fourier transform (for the commonly used Cooley-Tukey algorithm)
is O(nlog 2 (n)).

The Fourier transform separates signal information into
uniformly spaced frequency components. The Fourier transform has
fine frequency resolution and a complete lack of time resolution.
Increasing the input data block size increases the range of
frequencies which the Fourier method can resolve, but decreases
the time information available from a signal.

In summary, the primary difference between the Fourier
transform and the wavelet transform is in how each separates
signal information between time and frequency or a frequency
related parameter, shrinkage factor. Wavelet transforms separate
signal information by shrinkage factor and time. The number of
shrinkage factors used and the number of times resolved are
jointly limited by the input data block size. There are an
infinite number of wavelet basis from which an appropriate basis
can be selected. The computational complexity of the wavelet
transform is O(n), less than the Fourier transform 0(nlog 2 (n)).

I
I
I
I
I
I
I
I



I 2.1 The Scaling Function, Wavelets, and the Wavelet
Transform

Wavelet methods separate the components of a signal by time
and a shrinkage factor that is related to frequency. With a
wavelet transform, both the time resolution, or "correlation
length", and the shrinkage factor resolution vary logarithmically.

The wavelet technique takes into account the reciprocal
relationship between time and frequency (or any type of structure
which is expressed across multiple data points). To identify or
locate the position of a particular shape, such as an oscillation,
in a set of data, one must look for relationships among the data
values; a structure or an oscillation exists only across a set of
data, and not in a single point value. A number has no frequency,
no structure. Conversely, properties which exist throughout a set
of data cannot be said to have a particular location within that
set. Wavelet signal representation techniques take this trade-off
into account by allowing small sets of data to be combined and
correlated to derive structural or shape information about that
subset, without requiring a complete transformation of the signal
into a particular type of structural information, the way a
Fourier transform does. Thus, unlike the Fourier transform one is
allowed to exchange a small amount of temporal resolution for a
small amount of information.

It is no accident that these properties are reflected in the
characteristics of many natural signals. Signals with time
varying characteristics, like speech, music, seismic signals and
underwater acoustic signals are all best analyzed by a system
capable of resolving both frequency and time. Furthermore, many
signal-producing phenomena have octave band structure due to the
presence of harmonics within the signal and respond well to
wavelet analysis. Transient events also respond well to wavelet
analysis in that the identification of precisely located
phenomena, such as the sharp onset of a signal, requires the
ability to resolve its location in time with a very short
wavelength, while the characteristics of later, more persistent,
parts of the signal may require the ability to identify longer
wave shapes.

Scaling functions, wavelets, and the wavelet transform are
discussed in more detail in the next three sections and also in
Appendix B.

I 9
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1 2.2 The Scaling Function

The scaling function is at the core of any wavelet based
representation of a signal. We will discuss only compactly
supported wavelets in this report. The scaling function has three
essential properties. The first is that it is compactly
supported. This means that the scaling function is exactly zero
outside a bounded region of the real line. The scaling function
is only locally non zero.

The second essential property is that the scaling function is
orthogonal to integer translates of itself. The importance of
this will become clear a little later. The third property is that
the scaling function is intimately related to smaller, or scaled
versions of itself. This relationship is expressed concisely by
the scaling equation:

4 W(x) = ak q( 2 x - k) (2.1)

where 9(x) is the scaling function. The function v(2x) is a
cmaller, scaled down (by a factor of two), version of p(x). The
scaling equation states that 9(x) is equal to a weighted sum of
these small versions of itself. The numbers ak, of which only
finitely many (N, which is an even number here) are non zero, are
called the scaling coefficients. N is the size of the wavelet
system. The support of 9, the region on which it is non zero, is
the interval [0, N-1]. The coefficients Qk must satisfy certain
conditions in order for the scaling function to exist and satisfy
the scaling equation. There turns out to be an infinite number of
sets of scaling coefficients for every even N > 2. It is the
choice of the ak, from among this set, which determines the
detailed shape of 9(x).

Scaling functions are commonly selected from the class of
Daubechies functions, which have several important
characteristics. They are relatively smooth and have certain
approximation properties (i.e., vanishing moments). These systems
will be referred to as D2 (which is also the "Haar") D4, D6,
D8... Dn, where n is the size of the system. The first four
Daubechies scaling functions are shown in Figure 2.1.

The scaling function is the basic unit from which a level ofIa
detail is constructed. This is done by considering the set of
functions which can be represented as a linear combination of
shifted versions of the scaling function. That is, we define a
collection of functions at "scale level" j, which we write Vj to be
the set of functions which are linear combinations of the
functions 9(2Jx - k), where k is an integer. The factor 2J
multiplying x has the effect of shrinking the support of 9 to the
interval from 0 to (N - 1)/2J, and the shift by k moves these small
functions around. Thus a function's components at scale level j

* are expressed by the equation:

10
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fj(x) = cj,kP(2Jx - k) (2.2)
kEz

where fj is the part of f resolvable at the scale level j.
This idea can also be expressed by stating that Vj is the

space spanned by the set

{P(2Jx - k) IkEZ} . (2.3)

This set of functions forms an orthonormal basis for Vj. Functions
in Vj are uniquely expressible as linear combinations of the basis
functions, and the basis functions all have unit "energy". Thus
the set of functions {1(2Jx - k) } form an orthogonal set of
"templates" for Vj.

The effect of performing a transform with such a set of basis
functions is to identify, within the signal, those parts or
components which are similar to the basis functions at the given
scale level. Similarly, a Fourier transform has oscillatory
functions as a basis, and identifies the relative contribution of
each frequency to the overall signal.

With shifted versions of the scaling function as a basis, the
wavelet transform will identify components which are similar to a
particular shifted copy of the scaling function; that is,
representations of a function in the scaling function basis
identifies features locally in time, since the scaling function is
compactly supported, and locally in scale level, because the
scaling function has structure.

There is another, equally good, set of orthogonal "templates"
for this scale level Vj. This set of "templates" gives a different
type of information than the one presented above. In our previous
basis, all of the resolution within the scale level j was in the
temporal domain: each coordinate corresponded to a position in
time. The new basis will trade some of this temporal resolution
for some additional structural information; for each scale level
it will give us two sets of coefficients, one set which represents

large structure, while the other set represents small ("fine")
structure. The process extracts or filters out the components of
the scale level j which cannot be regarded as part of the coarser
scale level, j - 1.

I
I
I
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I 2.3 Wavelets

This idea of dividing the scale level Vj into a coarser version of
itself, Vj-,, and a difference space, which we will call Wj-i. can
be compactly expressed as an orthogonal splitting of the space Vj
into two perpendicular spaces Vj-i and WJ-1:

Vj = Vj_1  G Wj_ 1 . (2.4)

The reason this can be done efficiently comes from the scaling
equation. Since 9(x) can be expressed as a linear combination of
translated versions of V(2x) the coarser scale level Vj_. is
contained within the finer scale level Vj:

Vj-1 C Vj (2.5)

* Repetition of the argument shows that

Vj_1  C Vj C Vj+ 1  C Vj+2 . . . (2.6)

3 The difference space, WJ-l, contains all that remains when the
coarser scale information is removed. However, since Wj-j is
contained in Vj, it is also expressible as a linear combination of
translates of T(2Jx).

The actual set of functions that are used to span the space
We-1 are the orthonormal basis formed by the functions3 N-i

W(2Jx) = N- (-1)kaN-kiP(2j+i x - k) (2.7)

or in the case of j =0,

N-1

I (1)kaNk-1l( 2 x - k) (2.8)
k=O

3 Notice that the signs now alternate in the sum, and the order of
the coefficients ak has been reversed (k - N - k - 1) . These
changes make W(x) orthogonal to p (x). The full basis for Wj is
formed by taking shifted versions of a, i.e., Basis (Wj) =

{2J/2W(2Jx-k) Ik an integer}. The support of w(x) is easily seen to
be the same as the support of 9(x), and this is true for the
shrunken versions as well, that is, the support of w(2Jx-k) is the
same as the support of WV(2x-k). The normalization term 2J/2
maintains unit energy in the functions. Figure 2.2 shows the
wavelets which correspond to the scaling functions presented in
Figure 2.1.

Thus the transformation from the first representation of Vj,
where fj was expressed as a linear combination of shifted versions
of iP(2Jx), to the new representation, where fj is expressed as aI sum of translates of 4p(2J-lx) and translates of W(2j-lx), gives us
new information about the shapes and structures, perhaps
frequencies, present in fj. This is at the expense of some temporal

13
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I resolution, because the new basis functions are twice as long. The
new basis incorporates the inter-relationships among larger
subsets of the data, providing correlative information. As a
result of the spectral refinement, there has been a loss of
temporal resolution.

The scaling function, being the origin for all of the spaces
Vj, forms the connection between these spaces via the scaling
equation, equation 2.1. The basic wavelet,W, represents the
differences between the scale levels.

i
I
I
i
i
I
I
I
I
I
i
i
i
i
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12.4 The Wavelet Transform

The exchange of temporal resolution in Vj for scale resolution in
the division of Vj into Vj- 1 and Wj-j forms the basic unit of the
Wavelet transform. Since the definition is independent of scale
level, it can be repeatedly applied in the same way. Furthermore,Ithe operations involved in the transformation require only the
expansion coefficients of the function f(x) in the basis at the
current scale, and not the actual values of the function. The
computation is very simple and efficient because of the close link
between the functions 9 and W.

The basic operation involved in a wavelet transform is the
conversion of temporal resolution into structural or spectral
information. This basic single step, essentially a filter,
exchanges half the temporal resolution of a signal for twice the
"frequency" resolution; the product of the two remains the same.
More importantly, this operation can be repeated to gain any
desired level of detail in the structural or spectral realm, while
only imposing a reciprocal loss of resolution in the temporal
domain. This is in sharp contrast to Fourier transform
techniques, where one either gets all the available frequency
information, or none of it, with no intermediate stages of
knowledge available.

The wavelet transform allows one to move gradually between
the two extremes present in the Fourier transform, successively
gaining shape or structure information. In a sense, the wavelet
transform interpolates between the frequency, or structure, domain
and the temporal domain. This step by step transformation can be
understood in terms of trade-offs between relative time resolution
and relative frequency resolution.

Since the transform is defined in terms of operations on the
coefficients of the representation, and not the actual values of
the scaling or wavelet functions, the output from a single stage
of the transform is exactly what the next stage requires for
input. This easily pipelined, recursive structure is what makes
the wavelet transform rapidly computable. While many such
structures are made possible by the wavelet transform, one in

-- particular, the one-sided or Mallat transform, has proven to be
exceptionally useful in analyzing signals. Figure 2.3 shows one
operation of the wavelet transform. The second operation uses theI"low pass" (see Figure 2.4) output coefficients from the first
stage as the input for the second stage, etc. The number of data
points at each level is reduced by a factor of two by the3m conversion of temporal information into spectral information.

* 15
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U 2.5 The Computational Complexity of Wavelet Transforms

This section is concerned with the computational efficiency of
wavelet-based analysis techniques. The computational complexity
of several types of wavelet transforms is developed and
comparisons are made to the computational complexity of the FFT.
Both pre- and post-processing requirements are ignorci. It is
assumed that the output from the wavelet transform or FFT is the
desired result. The input block size is the factor which
determines the computational cost. The first case is a wavelet
transform which resolves only a portion R=1/2 J of the total
bandwidth, and resolves it as finely as possible using recursive
wavelet techniques. The simplest example of such a transform is
the familar Mallat Transform, which calculates the decomposition
of a signal on the basis of scale, i.e., it "homes in" on low
frequencies. This fundamental structure requires

OPS(Mallat) = a(K)N(I-l/2J) # of operations (2.9)

where a(K)=(K+I) multiplies and (K) additions per output point. The
number of input data is N, and J is the finest level calculated;
that is, the basic wavelet decomposition operation is applied J
times. The number of nonzero coefficients is K, which we have
also called the length of the wavelet coefficient matrix. Note
that whatever the depth of the decomposition, the operation count
never exceeds a(K)N. This operation count also applies to any
wavelet transform which "zooms in" on a single location in phase
space, allowing other side-bands to remain unchanged. These are
not partial wavelet transforms: each is a complete representation
in a wavelet basis. Each is, however, a partial frequency
decomposition. That is a powerful advantage because only what is
required need be calculated.

In applications where one wishes to resolve frequencies (or
some other structure) to some pre-specified resolution (say 1/2j),
and one is interested in a small number of sub-bands, wavelets are
very computationally. efficient. This case includes the Mallat
Transform, and any other wavelet processing scheme which generatesIonly a small subset of the finest resolution cells.

If the application requires that the temporal resolution
existing in a subband be converted to frequency or structureI information, the wavelet transform can be further applied in a
uniform fashion to derive this information, as in Figure 2.4.
Since the formula for this case, equation 2.10, is rather
complicated, comparisons were made with the complexity of an FFT
calculation for the full bandwidth of the signal, and for
consistency the wavelet transform was also carried to its full
resolution within the resolved subband. Since there are
essentially no savings possible with an FFT for resolving only a
portion of all subbands, the full complexity of 3n+nlog 2n was used
for comparison.

17
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I If we define

1. N = the number of data points;

2. K = the size of the wavelet filter (assumed to be
constant throughout the procedure) and a(K) is the
computational cost for the fixed filter length;

3. R = the portion of the bandwidth of the signal which is
resolved (assumed to be 1/2L for some L);

4. J = the finest level of resolution (the width of theI frequency bands resolved is 1/2J),

then the number of operations required to generate the desired
results, along with all of the remai.,ing results that are required
to have a complete representation, is:

a(K)N(1+R(J-2+Iog 2 (R))/2) (2.10)

I The comparison is summarized by Figures 2.5 and 2.6, (a(K) counts
the number of real multiplies) which show the filter length for
which the two techniques are equally complex for a variety of
values of R. See Figure 2.4 for an example of such a
decomposition.

Figures 2.5 and 2.6 relate increased wavelet computationals
due to increased number of coefficients, K, to wavelet superiority
versus FFT (in terms of computations required), which increases as
the data block size increases.

i
I
I
I
I
I
I
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3.0 Basic Radar System Operation

IRadar is an active sensor system that transmits electro-
magnetic energy and interprets the echoes reflected from
objects. Objects in the propagation path scatter this energy
in directions determined by the physical and electromagnetic
characteristics of the object. The reflected energy is then
received, processed, and perhaps interpreted by the radar
system. Since electromagnetic energy propagates with a
(nearly) constant velocity in the atmosphere, the round trip
travel time t from the radar to an object and back again can

I be converted to distance by the formula

r = ct/2 (3.1)

where r is the range to the object and c is the speed of
light.

Radars are built for many purposes. Some are used to
detect objects such as aircraft, ships, or tanks. Others are
used to provide weapon guidance information. Still others
are used to map the surface of the earth or for weather
forecasting. In the first two cases, users are interested in
the energy reflected from the "target" and they desire that
it be separated from energy received from the earth or
sources of clutter. Similarly, a "target" radar signal may
be corru.pted by "noise" which is undesired or extraneous
energy received with the signal of interest. The total noise
level present in a radar depends on many factors including
the weather, operation of nearby electrical equipment (either
friendly or hostile) and many other factors. The radar data
processing requirements will vary from system to system
depending on the intended use.

Radar processors may have to perform any or all of the
following tasks. "Detection" means that the radar has found
some object that may possibly be a target based upon some
very fast data processing procedure designed to eliminate
most noise and homogeneous clutter. One such process is
called CFAR (for "constant false alarm rate") where thresh-
olds are set to eliminate desired percentages of noise.I"Discrimination" is the process of separating detected
targets from detected clutter. "Classification" is the
process of identifying particular types of targets (some of
w,hich may be more important as a missile target than others -

for example, tanks versus trucks). Also, the radar may
perform "tracking" which includes computing and frequently
updating target position and motion information.
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3.1 The Millimeter Wave Radar Data Base

Millimeter wave (MMW) radar systems are particularly
well suited for use in tactical missile systems because they
are physically small and their short wavelengths provide
excellent target range resolution in nearly all weather
conditions. Missile sensors are usually used only once; so,
they must be inexpensive. Also, MMW radars have some resist-
ance to electronic countermeasures (i.e., jamming). AItypical MMW radar block diagram is given in Figure 3.1,
and areas that wavelets methods might apply to are high-
lighted in Figure 3.2.I The radar data used in studies on this contract was
taken by a 35 Ghz MMW radar. This data base contained
coherent radar looks at a trihedral (which is visible when
the transmitter - receiver polarization is "odd"), looks at
two dihedrals (which are visible when the transmitter -
receiver polarization is "even") separated in range, looks at
many 360 degrees of azimuth aspect angles of an M60 tank, and
an M35 truck. The trihedral (representing odd bounce
scattering) is visible when the transmitter-receiver are"odd" or of opposite sense (transmitting right hand circular
polarized energy and receiving lef' hand circular polarized
energy or vice-versa). The dihledrals (representing even
bounce scattering) are visible when the transmitter-receiver
polarizations are "even" or of the same sense (transmitting
right and receiving right or transmitting left and receiving
left).

Each polarization of a radar look consists of 63
frequency stepped pulses transmitted at and received from the
same target or area of ground. A 64 point (one zero added)
FFT then forms a matched filter with the received radar
frequency stepped pulse train. That is, phase change (due to
a point scatterer) in the pulse train will "match" one of the
columns of a discrete Fourier transform (DFT) matrix. In
that way, the original pulse length that was twice 63 feet
(for round trip travel) is subdivided to about one foot range
resolution by FFT processing. The result is called a high
range resolution profile (HRRP). This method of achieving
high range resolution allows the use of fairly long pulses.
That in turn allows long range target detection with low peak
power radar transmitters. There are two "odd" polarization
HRRPs and two "even" polarization HRRPs available from each
radar look. Additional details of this data base are given
in Appendix D.

Typical (head-on aspect) HRRPs and partial wavelet
reconstructions using the D2 (Haar) wavelet basis and 50%,
25%, and 10% of the coefficients to reconstruct the original
(100%) HRRP are shown in Figures 3.3 through 3.6. Figure 3.3
is a plot of the results for an even polarization M60 tank.
Figure 3.4 is a plot for the odd polarization M60. Figure
3.5 is a plot of the results for an even polarization M35
truck. Figure 3.6 is a plot of the results for an odd
polarization M35. It can be seen from these figures that
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reasonably fine structure is preserved along with the target
extent, even when only 25% of the wavelet coefficients are
used to reconstruct the original target image. This reduces
target image dimension by a factor of four. It is
conjectured that features from the reconstructed image may be
more robust than features from the original image. The next
phase of this contracc will investigate this conjecture in
detail.
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U 3.2 Wavelet Approximation to the FFT

Several studies were conducted using the radar data to
develop and demonstrate wavelet processing methods for
approximating the Fourier transform and extracting target
features. The experiments ranged from simple demonstrations of
the methods, which proved that they could be performed, to a
series of trials to evaluate the sensitivity of the methods to the

choice of wavelet basis functions and target signature variations.
The sensitivity of these methods to the selection of basis
functions is important, in part because the choice of basis
function directly influences the computational complexity of the
method. The sensitivity to signature variation is important

mI because the military targets (i.e., tank and truck) exhibit
significant signature fluctuations as a function of viewing angle.

This section reports the results of these studies which were
performed to assess the basic feasibility of performing wavelet
approximations to the discrete Fourier transform (DFT). The
mathematical details of wavelet transform theory are discussed in
Appendix B.1, and details of wave transform approximations toIFourier transforms are in Appendix B.2.

The method we chose to quantify the error of approximation is
the ratio of the mean squared error, to the total energy in the
signal. This method is sensitive to any loss of target energy by
the approximation method and the normalization allows the direct
comparison of different signals.

Figure 3.7 illustrates the normalized error of approximation
as a function of the number of wavelet terms retained in the
wavelet FFT approximation formula (B.30). Note that, for this M60
tank scattering profile, the error of approximation decreases very
rapidly in the first 5 or 6 terms followed by a more gradual and
steady convergence to zero. This behavior is typical of the
method applied to other target profiles, as illustrated i±i Figure
3.8. The convergence of this method for each of the target
profiles (which vary in aspect or viewing angle) is rapid and
consistent. The method shows little sensitivity to changes in
aspect angle and therefore to target signature variations.

Figure 3.9 is a plot of the error for a number of wavelet
bases. The functions considered ranged from a 2 coefficient
wavelet basis (the Haar basis) to an eight coefficient wavelet
basis (Daubechies - 8.) There is very little difference in their
performance. This surprising result indicates that the
approximating wavelet basis does not have to be chosen very
carefully and that the computational advantages of short wavelets
can be fully exploited in this application.

In the previous cases, the wavelet terms which were retained
in the approximation were the wavelet coefficients with the
largest absolute value. They were determined by sorting the
wavelet coefficients. Sorting is an expensive computational
process which would quickly eliminate any computational advantage
wavelets would have relative to Fourier methods. There is an
alternative formulation of the wavelet approximation to the
Fourier transform which uses all of the wavelet coefficients at a
given scale (Eq. B.33) rather than coefficients selected by
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I magnitude. An experiment was performed to evaluate the
feasibility of eliminating entire scales from the approximation.
Figure 3.10 shows the results for several wavelet basis functions.
The approximation is very poor until the smallest scale wavelet
coefficients are included. This means that the energy was
distributed in wavelet coefficients across all scales.

The results of the previous experiment motivated a search for
a method to preprocess the radar data so that the target energy
could be placed into predictable scale levels and thereby
eliminate the need to select (or sort) the most significant
wavelet coefficients. This led us to adapt a method called "phase
unwrapping" to this problem. Appendix C describes the
mathematical details of the procedure. When it is applied to the
radar data, the target energy is concentrated into the lowest
scale levels and the approximation method can discard the highest
scale level terms with little loss of information. This
significantly reduces the computational complexity of the method.
Figure 3.11 illustrates the reduction in error it produced.

In conclusion, it is feasible to apply the wavelet
approximation to the Fourier transform to the millimeter wave
sensor problem of producing HRRPs. The error of approximation can
be controlled to any level desired by adjusting the number of
wavelet terms retained in the approximation. The computational
complexity of the wavelet methods for wavelet support lengths of 6
or less are comparable to the Fast Fourier Transform for the radar
data used in this study, which is processed in blocks of 63
complex data points. The target data is contained in a relatively
large fraction (1/2 to 1/3) of the output data points which
requires that a large fraction of the wavelet coefficients be
retained in the approximation. This increases the computation
required for the wavelet methods. The target extent varies from
about 10 fine range resolution cells to 30 range resolution cells.
The error of approximation was about 0.10 (Norm. MSE) when 16
terms were retained and was less than 0.05 (Norm. MSE) when 32
terms were retained. It should be noted that the 8 term
approximations contain over 80% of the original target energy, but
have relatively severe "shape" distortion.

Since the wavelet methods offer no computational advantage
and produce some error, they are probably not an appropriate

choice for this particular radar data processing problem due to
the small number of data points to process. However, if the data
came from, for example, an FMCW (with a long pulse length) that
performed 1024 point FFT's, yielding one foot range resolution,
tank and truck detections, which are 10 to 30 feet long, depending
on aspect, could be very efficiently processed by wavelet FFT
approximation. Additional comparison results are given in
Appendix B.3.
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i 3.3 Target Length Estimation

This section presents the results of experiments conducted on
the radar data to develop and investigate the capabilities of
wavelet based feature extraction methods. Of particular interest
was the feasibility of performing feature extraction with a
wavelet based approach and the stability of the method with
respect to target signature variations due to change of aspect
angle.

The feature which was selected for analysis was target extent
which is the length of the target image in the high resolution
radar range data. This feature is important because it requires
that both the "front" and "back" of the target be determined.
Target classification algorithms need this information to delimit
the region in the high resolution radar data which contains the
target detail. The performance of the wavelet methods is comparedI to a baseline method described in appendix E.

The following procedure was used to measure the stability of
the target extent methods.

I 1. Calculate the target extent for a large number of aspect
angles. The entire target data sets available to the
subcontractor were used for the results presented in this
report.

2. Divide the results into contiguous blocks of 50 items and
compute the average extent for each of the blocks. This
is interpreted as the true target extent in this
neighborhood.

3. Calculate the differences between the extents calculated
in step 1 and the local averages calculated in step 2.
From the differences, calculate the standard deviation
for each block of 50 estimates. This estimate of the
standard deviation (locally) is a measure of the
stability of the method.

4. Calculate the mean and standard deviation of the local
standard deviations calculated in step 3 for the entire

i available target data set.

The wavelet algorithm used for extracting the target extent
was based on thresholding the squared modulus of the large scale
component of the one-sided wavelet transform of the complex radar
image. This is a method for removing noise from the target data.
It has two variations depending on the order in which mathematical
operations are performed:

* IWT(zk) 12

* WTI (ik) J2

where WT() indicates a wavelet transform and I 12 the squared
* modulus.
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N The first case requires the wavelet transform of complex
Fourier transform data while the second case only requires that a
real wavelet transform be performed. The performance of the
second method was found to be better, as well as less costly. It
is described below.

The thresholding procedure is similar to the method used in
the baseline method (described in appendix E) except that only one
half of the number of high resolution range cells are used to
compute the noise floor because the one-sided transform components
are sampled at half the original rate, i.e. they are half the
length of the original sequence. Two additional variations of the
wavelet transform method were studied to investigate the
sensitivity to scale. The one-sided wavelet transform method was
recursively applied to the large scale components resulting in
data which were sampled at 1/4 and 1/8 the original rate. These
cases used only four and two high resolution range cells,
respectively, to estimate the noise floor. The general wavelet
method used to estimate target extent is the following.

1. Compute the discrete Fourier transform (DFT) zk of the
phase history data sequence Zk.

2. Compute the squared modulus of the transformed data i~k1 2 .
3. Compute the large scale component of the one-sided

wavelet transform of i~k1 2 .

4. Establish a threshold T>O. (T became 25.)

5. Compute the average power A of the 8 (or 4 or 2) high
resolution range cells furthest away from the target.
Since the target is known to be located in the center of
the range gate, these are the first and the last 4 (or 2

* or 1) high resolution range cells.

6. Compute the indices I, and 12 of the first and last
entries of I k1 2 that exceed T x A

7. Compute target extent as 2 x (12 -I1 + 1) [or 4 x (12 - 1l
+ 1) or 8 x (12 -I1 +1)].

The computational cost in real multiplies of these three
filtering methods are (where K is the size of the wavelet system):

I 1. For the one half scale method:Cost(N) = (K+1)(N/2)
O(N);

2. For the one quarter scale method:Cost(N)=(K+l)(3N/4)
0(N);

3. For the one eighth scale method:Cost(N)=(K+l)(7N/8)I =(N).
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I Section 2.5 contains a detailed discussion of computational
complexity.

Figures 3.12 through 3.15 are plots of mean target extent
deviation versus scale for a threshold value of 25. The value
plotted at the 64 cell resolution position represents the baseline
method. The points plotted at the 32, 16 and 8 resolution
positions represent the wavelet methods at 1/2, 1/4 and 1/8 scale
respectively. Note that the wavelet methods are about as stable
as the baseline method with resolution (dimensionality) reduced by

* a factor of 4.
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3.4 Wavelet Target Classification Results

I A two class target classification experiment was
conducted to see if it is feasible to improve radar target
classification signal processing by wavelet methods, either
by improving classifier percent correct classification (PCC)
in the presence of noise (added to the very clean radar
target data) or by decreasing the number of computations
required by the classifier processor, or both. The
classification problem examined was for two vehicles, an M60
tank and an M35 truck. The tank might be a target for a
missile, but the truck might be a target-like object that one
would not want to waste a missile on. Classifier overall PCC
was improved in realistic signal/interference situations by
up to 6 percentage points, and computations were decreased by
a factor of 10.

Quadratic classifiers were used with either odd degree
(1,3,5,...) aspects as the "training" set and even degree
(0,2,4,...) aspects as the "test" set or the reverse. Noise
was never added to the "training" set. Because this is
actual radar data taken on an outdoor range with very light
clutter background, the "clean" data has a signal to clutter
ratio of greater than 20dB. The wavelet basis selected was
the Haar or Daubechies 2 wavelet basis. The features used by
the classifier were particular wavelet coefficients produced
by the target HRRPs. Wavelet coefficients were selected
logically but by no means optimally.

Specific results are given in Figure 3.16. These
results clearly indicate that it is feasible to improve radar
classifier processors by wavelet methods.

This study used one odd polarization and one even

polarization. This would be the case if one transmitted only
one of the two circular polarizations, but received both
circular polarizations or the reverse. The starting point
for this study was the target HRRPs, which contained one foot
range resolution target magnitude data. It is assumed that
target length (as seen by the radar) is no more than 32 feet
In reality, target length varies considerably depending on
target aspect angle. For example, targets are longest when
viewed from a head-on (0 degree aspect) or from a 180 degree
aspect.

In Figure 3.16
S = total signal power
N = total power of noise added
S/N given is for the tank (higher for the truck)
HR54 = 32 odd & 32 even HRRP components

W64-11 = 11 coefficients from HR64 wavelet transform.
As part of the next phase, it will be important to

perform a three class classifier experiment. This was not
accomplished during this phase due to cost and schedule
constraints.

139



I Figure 3.16: Target Classification - Original vs. Wavelet

COMPLEXITY (number of multiplies)

HR64 2144

W64-11 = 205 (90% reduction)I
PERCENT CORRECT CLASSIFICATION

S/N S/N(dB) HR64 W64-11
zero noise 92 85

6.6 8.2 77 83
2.7 4.3 69 72
0.67 -1.7 59 60
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i 3.5 Fine Range Resolution by Wavelets

It is theoretically possible to obtain fine range

resolution HRRPs by using wavelet transforms instead of FFTs
if the waveform transmitted is modified to be appropriate for
wavelet transforms. This possibility is important because
a radar's digital signal processor (DSP) is typically one of
the more costly parts of the radar due to heavy processing

load requirements - primarily due to the need to perform many
FFTs. Since a wavelet transform is considerably faster than
an FFT, significant DSP cost, weight, and size savings will
result from wavelet, rather than FFT, HRRPs.

A wavelet transform matrix W can be constructed from the
product of a number of wavelet "butterfly" matrices. This is
similar to computing a discrete Fourier transform (DFT)
matrix as the product of FFT "butterfly" matrices. Unlike
the DFT matrix, the wavelet matrix W consists of real (rather
than complex) numbers, for the four wavelets of initial
interest, D2 (Haar), D4, D6, and D8. The column vectors, wi,
W2, ... , wn of the n-by-n matrix W are orthonormal. If y

-- denotes the column vector of wavelet coefficients for an
input column vector x, then y could be computed by (more
efficiently by "butterflies")

y' = x' W (3.2)

and the absolute value of the components of y will be a
fine range resolution HRRP if the n transmitted waveforms
correspond to the wavelets in the following ways.

1. The n sequential transmitted waveforms look like the n
rows of the matrix W. (The orthonormal wavelet
vectors are the columns of W.)

-- 2. The transmitted waveforms are "stretched" to twice
the W-row-length, n, to allow for 2-way travel.

An eight dimensional example with the Haar wavelet follows in
Figure 3.17. The example easily can be extended to a 32 or

64 dimensional version. The Haar wavelet is easy toIdescribe, but due to it's non-smooth nature it is probably
not a good wavelet waveform for radar transmission. In
Figure 17, instead of stepping frequencies from one waveform
to the next, the shape of the waveform changes in a wavelet
related fashion. There are 8 wa.eforms used to break an 8
foot long range bin into 8 one foot segments by wavelet
transform (instead of FFT). The time duration of the

-- waveforms is 16 feet divided by the speed of light.
There are two speed advantages to transmitting wavelet-

related signals and processing by wavelets to get fine range

I- profiles.

1. Wavelet transforms are O(n); FFTs are O(nlog2(n)).

2. D2, D4, and D6 wavelet transforms use 1-cycle

real*real multiplies; FFTs of I,Q data use 6-cycle
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complex*complex multiplies (4 multiplies, 1 add,
and 1 subtract)

Figure 3.17: Haar Waveforms for HRRPs

Wave # Waveform
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2 ---------
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3 6
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18 minK 7

8

* 42



I

4.0 Supplemental Results

Figures 4.1 through 4.3 contain plots of partial

reconstruction by D6 wavelets, of a normalized odd bounce
polarization HRRP from a radar look at the calibrated
trihedral corner reflector. Figures 4.4 through 4.6 contain
similar plots for an even bounce polarization HRRP from a
radar look at two dihedrals that are separated by about 10
feet in range. Each plot lists the number of terms used in
the reconstruction and the normalized mean square error.

Figures 4.7 through 4.10 show estimated target length
versus aspect angle for the M35 truck. The polarization was
even (transmit left circular and receive left circular). The
four plots are for FFT (Martin Marietta method) processing,
wavelet reconstruction dimension reduction by a factor of 2,
then 4, then 8 respectively. Similar results are given for
an odd polarization (transmit right circular and receive left
circular) in Figures 4.19 through 4.22. Since target length
will vary with target aspect, it was decided that a good

measure of length estimation stability would be the standard
deviation (over blocks of 50 radar looks) of the length
estimate. That is, a small standard deviation would indicate
stable length estimation. These results are presented in
Figures 4.11 through 4.18 for an even polarization M35 truck
and in Figures 4.23 through 4.30 for an odd polarization M35

truck. Figures 4.11, 4.13, 4.15, and 4.17 contain plots of
the mean of the length estimates from blocks of 50 M35 looks.
Figures 4.12, 4.14, 4.16, and 4.18 contain plots of the
standard deviation of the length estimates from blocks of 50

i M35 looks, along with a numerical mean and standard deviation
of these standard deviations. This standard deviation
comparison was the figure of merit used to determine the
stability of the wavelet methods.

Figures 4.31 through 4.34 show estimated target length
versus aspect angle for the M60 tank. The polarization was
even (transmit left circular and receive left circular). The
four plots are for FFT (Martin Marietta method) processing,
wavelet reconstruction dimension reduction by a factor of 2,
then 4, then 8 respectively. Similar results are given for
an odd polarization (transmit right circular and receive left
circular) in Figures 4.43 through 4.46. Target length
standard deviation versus aspect angle results for an M60
tank are presented in Figures 4.35 through 4.42 for an evenI polarization M60 tank and in Figures 4.47 through 4.54 for an
odd polarization M60 tank. During the analysis it was
discovered that a portion of the data for the M60 tank was
found to be unusable. Although it was too late in the
analysis to determine the problem and supply the correct data
to our subcontractor, it had no significant outcome on the

results.

For both trucks and tanks these results show wavelet
dimension reduction by a factor of 2 or 4 looks acceptable
based on a desire for small standard deviations, but when the
dimension is reduced by a factor of 8 the standard deviation
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becomes large and erratic. Consequently, the results show
that dimension can be reduced by up to a factor of 4 but not
8, with no appreciable loss of stability in length esti-
mati on.

I
I
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Number of terms =8 Normalized MSE = .4539
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Figure 4. 1: Partial Wavelet Reconstruction-lihedral, N=[81.
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Figure 4.2: Partial Wavelet Reconstruction-Tihedral, N=[16].
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F igu re 4. 3: Partial Wavelet Reconstruction-MNhedral, N=[32].
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F i gu re 4.5: Partial Wavelet Reconstruction-Dihedral, N=[16].
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F i gure 4.6: Partial Wavelet Recontruction-Dihedral, N=[32].
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Fi gu re 4.7: Target Extent versus Aspect Angle
Target: M35. Threshold: 25, Polarizaton: LL

Analysis of Real data (Martin Method)
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Fi gure 4.8: Target Extent versus Aspect Angle

Target: M35. Threshold: 25, Polarization: LL
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Figure 4. 9: Target Extent versus Aspect Angle
Target: M35, Threshold: 25, Polarization: LLI Analysis of Real data (D)6 Level 2)
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Figure 4.11: Average Target Extent versus Aspect Angle
Block Size: 50. Target: M35, Threshol" 25, Polarization: LL

70 Analysis of Real data (Martin Method)
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gu re 4.1 2: Standard Deviation Target Extent versus Aspect Angle
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Fi gure 4. 1 3: Average Target Extent versus Aspect Angle

Block Size: 50. Target: M35, Threshold. 25, Polarization: LL
70 Analysis of Real data (136 Level 1)
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SF igu re 4. 14: Standard Deviation Target Extent versus Aspect Angle
Block Size: 50. Target: M35, Threshold' 25, Polarization: LL
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I F i gu re 4. 15: Average Target Extent versus Aspect Angle

Block Size: 50,Target: M35, Thrshold- 25.Polarizaton: LLI7Analysis of Real data (D6 Level 2)70
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Figure 4.16: Standard Deviation Target Extent versus Aspect Angle
Block Size: 50, Target: M35, Threshold. 25, Polarization: LL
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U Figure 4. 17: Average Target Extent versus Aspect Angle
Block Size: 50. Target M35, ThresholdL 25. Polarization: LL

70 Analysis of Real data (D6 Level 3)
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I Fi gure 4.1 8: Standard Deviation Target Extent versus Aspect Angle
Block Size: 50, Target: M35, Threshod. 25, Polarization: LL
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I Figure 4. 19: Target Extent versus Aspect Angle
Target M35. Threshold: 25, Polanzaon: LRu 60Analysis of Real data (Martin Mediod)
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Fi gu re 4. 20: Target Extent versus Aspect Angle
Target M35. Threshold: 25, Polarization: L.R
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I Figure 4.21: Target Extent versus Aspect Angle
Target M35. Threshold: 25. Polarization: LR3 Analysis of Real data (D6 Level 2)
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Figure 4.22: Target Extent versus Aspect Angle
Taget M35. Threshold: 25, Polarization: LR
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F i gure 4. 23: Average Target Extent versus Aspect Angle
Block Size: 50, Target: M35, Thresokl 25, Polarizaton: Li

Aralysis of Real data (Martin Method)70
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F i gure 4.24: Standard Deviation Target Extent versus Aspect Angle
Block Size: 50. Target" M35, Thmshokl: 25. Polarization: LR
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H pFigu re 4. 25: Average Target Extent versus Aspect Angle
Block Size: 50, Target: M35, Threshold. 25. Polarization: LR1 70Analysis of Reaidata(D6 Level I)
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Figure 4.26: Standard Deviation Target Extent versus Aspect Angle
Block Size: 50, Target M35, Threshold: 25. Polarizaton: LR
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Figure 4.27: Average Target Extent versus Aspect Angle
Block Size: 50, Trge M35. Threshold: 25, Polarizaton: LR
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F igure 4.28: Standard Deviation Target Extent versus Aspect Angle
Block Size: 50, Target M35, Threshold: 25, Polarization: LR
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Fi gure 4.29: Average Target Extent versus Aspect Angle
Block Size: 50, Target M35, Threshold: 25, Polarizaton: LR

70 Analysis of Real data (16 Level 3)
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Figure 4.30: Standard Deviation Target Extent versus Aspect Angle
Block Size: 50, Target: M35, Threshold: 25, Polarization: LR
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Figure 4.31: Target Extent versus AspectAngle
Tuget: M60. Tbshold: 25, Polxiziors L±
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Figure 4.33: Target Extent versus Aspecd Angle
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Figure 4. 34: Target Extent versus Aspect Angle
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F i gure 4. 35: Average Target Extent versus Aspect Angle
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NFigure 4.37: Average Target Extent versus Aspect Angle
Block Size: 50. Tapt~ M60. Thuld. 25. Pobrizio: LL
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I Figure 4.39: Average Target Extent versus Aspect Angle
Bock Size: 50, Targe M6, Threhold: 25. Pciianios LL
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F i gu re 4.40: Standard Deviation Target Extent versus Aspect Angle
Block Size: 50, Target M60. T rshold 25, Pabizam LL
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I F igure 4.41: Average Target Extent versus Aspect Angle
Block Sime: 50, TargeL M60.71mahold, 2S.Poimizaion: LL
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Figure 4.42: Standard Deviation Target Extent versus Aspect Angle
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Figure 4.43: Target Extent versus Aspect Angle
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IFigure 4.45: Target Extent versAspedtAnlgle
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Figure 4.46: Target Extent versus Aspect Angle
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I Figure 4.47: Average Target Extent versus Aspect Angle
Block Size: S0, Tet M60, Thnahold 25. Polwinaro.: Lit
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I Figu re 4.48: Standard Deviation Target Extent versus Aspect Angle
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IFigure 4.49: Average Target Extent versus Aspect Angle
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Figure 4.51: AverageTargetExtentversusAspectAngle
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Fi gure 4.53: Average Target Extent versus Aspect Angle
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Appendix A

List of Symbols

D Ring of dyadic rational numbers
:= {z:Z=m/20, m,nEZ,n >0)

R Field of real numbers.

Z Ring of rational integers.

Ip :- Multiplier for wavelet system. p E Z and p > 2.

[a] Wavelet Coefficient Matrix ("WCM").

= a ... aN.-1

Iwhere N is an integer multiple of the multiplier p.

If p = 2 then we write:

I [a] :- Wavelet Coefficient Matrix ("WCM").

ADGbl ... bN-)

N Number of columns in a WCM. N is an integer multiple of p.
If p = 2 then N is even.
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Appendix B

Wavelet Transform Theory

B.1 Wavelets and Wavelet Transforms

Most signals in science and engineering are modeled as mathematical func-
tions for purposes of analysis. In order to separate or examine certain impor-
tant features or characteristics of the signal, the function is often expanded
in terms of basis functions that span the space or a subspace that the sig-
nals of interest reside in. The most common example of this is the Fourier
transform where a signal that originates in the time domain is reformulated
in the frequency domain by expanding the function in terms of trigonometric
or complex exponential basis functions. This basis is most appropriate when
the signals have periodic components or are produced by systems that are
modeled by constant coefficient differential or difference equations.

Consider a periodic, possibly complex-valued, signal g(t) that is square
integrable over the range f 0< t _< 1 ) and with period one so that

g(t) = g(t + I). (B.1)

IThis function can be expanded in a Fourier series of the form

(t) =._ b, e'" (B.2)IM0
with the coefficients given by

b, = j 9(t)e -'Un dt (B.3)

I
I

I 73



t

which is an inner product of g(t) with the basis functions. Similarly, oneIdefines the wavelet transform with respect to a basis of wavelet functions.
The wavelet basis is generated by a p x N matrix [a] , where p and N

are positive integers and N is a multiple of p. The matrixI i S, .... aN,_I

I [a] aj.i(B.4)

Ior ... /

is a wavelet coefficient matr ("WCM") if it satisfies the scaling conditions

N-iI aka+ d =---- j.,(.
k=O

I a= ,o, (B-6)
,

where bij equals I if i = j and 0 otherwise. The overbar denotes complex
conjugation and I is an integer. The sums over k are finite sums since only
finitely many of the numbers a are different from zero.

The positive integer p is called the multiplier of the wavelet system and
N is called its length;

This matrix of numbers provides coefficients for the vector of recursions

N-i

'[a](z) = > a'0[a](2z - k) (B.7)

which implicitly define the wavelet scaling function r0 [a] and explicitly define
the basic wavelet functions W'[a](z), 1 < i < p. Observe that only 0 [a]
appears on the right hand side. The functions 0'[a](z) are defined for all real
numbers z E R.

The fundamental fact about systems of compactly supported wavelets is
that the collection of functions

Bauis[a:] {p:I2=p[aJ(pjz k)

o<i<, j,7,4z}
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form a basis for L' spaces, in particular for L2(R).
We now focus on the case of p = 2 and will use the following simplified

notation for the scaling function jp(t) = 0 (a](t) and the wavelet function
0t) E Jo'[a](t) where t E I. It can be shown that if the coefficients of this
equation satisfy the wavelet conditions, stated above, the solution W(Q) will
be orthogonal to integer translates of itself and can be normalized such that

< p( t ),,( t - k) > - I j(t) jp(t - k) dt = bok (B.8)

This means the set of basis functionsI ,(t) = i(t - 1) (B.9)

spans a subspace Vo in L2 and the coefficients of an expansion within this
subspace can be calculated as simple inner products. The feature of scaling
functions that makes them attractive for signal processing is their ability to
model signal properties that are related to the independent variable t. One
can increase the size of the subspace spanned by the scaling functions by
using Wpjk(t) := 2 i/2w( 2jt - k) which spans a subspace V. One can show

I that VoCV 1 CV2 C---.
The features of a signal can often be better described by defining a slightly

different set of orthogonal basis functions that span the differences between
the spaces spanned by the various scales of the scaling function. These new
functions are the wavelets. The basic wavelet is defined in terms of the scaling
function by

t = E"(_1)kaN-_k W(2t - k). (B.10)
Is

It is the prototype of a class of orthonormal basis functions of the form

,jk(t) = 2"/2 ,(2it - k) (B.11)

where 2' is the scaling of t. 2-k is the translation in t, and 21/2 maintains
the unity norm of the wavelet. We shall say that j is the base-2 logarithm
of the scale. If W, is the subspace of L - L(R) spanned by the integer
translates of the wavelet 2/ 20,(2t), additional disjoint subspaces are spanned
by integer translates of the wavelets for each different scale index j, that is,
by the functions Ojk(t). The relationship of the various subspaces can be
seen from the following expressions:

o C V C V2 C... CL 2 = L2(R), (B.12)
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Vo (D Wo = Vi , (B.13)

Vj, E Wj,- = Vj, (B.14)

L 2 = V0 Wo( W 1  " (B.15)

and indeed, if we allow j to run over all integers, then

L 2 =...W-2 ED W-1 ( WO (D W....Wj... (B.16)

This states that the set of basis functions formed from p(t) and ,j,k(t) span
all of L2 and, therefore, any function in L2 can be written

g(t) = c pt(I(t) + E dj,k~ j,k(t) (B.17)
1=-o j=O k=-oo

with the coefficients expressed by

= f g(t) pj(t) dt (B.18)

and

dj,k = I g(t) oLj,k(t) dt. (B.19)

The basis functions WI(t) and bjk(t) are numerical valued functions of nu-

merical variables; they have no physical dimension. In the expansion formula
(B.17) the argument 2Jt - k of 0 is a pure number so, writing

2'i-k=2j t- _)

the quantity 2i has the dimension t-1, i.e. frequency, and k/2j has the
dimension time.

These wavelet coefficients completely and uniquely describe the original
signal and can be used to represent it in a way similar to Fourier coefficients.
Because of the orthonormality of the basis functions, there is a version of
Parseval's theorem that relates the energy of the signal g(t) to the energy in
each of the wavelet expansion components and their wavelet coefficients by
the formula 0011gll = E Icil + E Z IdF ,. (B.20)

I j>O k=-00

76



This is one reason why the orthonormality is so important. Daubechies [2]
showed that the translates of the scaling function and the translated dilations
of the wavelets are orthonormal, and all of the these functions have compact
support (i.e. are non-zero only over a finite region) if there are only a finite
number of non-zero coefficients ak in the recursive scaling equation (B.7).
This provides the time localization that is particularly desirable for analyzing
both the time and the frequency behavior of transient signals.

Note that there is an infinite set of scaling functions and wavelets that
can be obtained by choosing different coefficients ak in (B.7).

B.2 Wavelet Approximation to the Fourier
Transform

In this chapter we state the relationships between the wavelet transform and
the Fourier transform as derived by Resnikoff and Burrus [5].

In this section we restrict attention to periodic functions g(t). Let mboxg(t+
1) = g(t). Then the scaling function and wavelet coefficients in (B.18) and
(B.19) are also periodic. The scaling function coefficients c(l) calculated from
(B.18) and using (B.1) are

= 0 j V~(t - 1) g(t) dt 00 L p(r) g(Tr + 1) dr _= 0 p)g ( B.21)=Co
v 

W  
v 

W  
w(].21)

Using the "partition of unity" property of scaling functions which states

00F, t- 1 (B.22)
I 1=-ao

we can write (B.21) as

-- = f o(r-)g(r)dr= g(r) 1)o(r-L)df g(= dr =c.

"1-1(8.23)

Therefore, c is a constant and not a function of 1. Note the interesting
property of W(t) which causes the scaling function coefficient of a periodic
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function to be equal to'the DC Fourier series coefficient for any scaling func-

tion satisfying (B.7);

Lo V(t) g(t) dt = j g(t) di. (B.24)

Using the partition of unity property (B.22) again shows the scaling function
term of the expansion in (B.17) is a constant.

~C1 ipt(t) = C ip(t - 1) = C. (B.25)
I I

In a like manner, using (B.19) we calculate the wavelet coefficients in the
expansion (B.17) by

d,,k+K = 21 2 1 0(2it - k - K) g(t) dt = 2j/2 1 0(2'(t - 2-K) - k) g(t) dt
(B.26)

which, after the change of variables r = t - 2jK and I = 2-jK or K = 2il,
becomes s dj+ = 22 1 i,(2T - k) g(r + 2-jK)dT f dik. (B.27)

This states
djk = dj.k+2,, (B.28)

or, the wavelet coefficients dj,, are periodic in k with period 2j. We now
use these properties with the basic definition of the Fourier series coefficients
from (B.3).

b. = j g(t) e- '2 "" dt (B.29)

Substituting the wavelet expansion from (B.17) for g(t) into (B.29) gives

b. C if n = 0;b..= "00 "-'i , (,) in, 0(B.30)

Ejco Ej-dk~j~n)inn96O

where t(f) is the Fourier transform of O(t) defined by
(f) -/0~~,p(t) e-i21 dt (B.31)
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with an inverse given by

0(t) = I' ( f) "e'df. (B.32)

An alternative form, which uses the Fourier transform of the basic wavelet
k(t) rather than 0tj,,(t), is [5]:

C if n =0;

,j/2 i n 0 (B.33)Ejo0 2-/ djn) (2)in

where j(f) is the discrete Fourier transform (DFT) of dj,k for various scales
j and is defined by [1]

N-I

d,(rn) - ~ ~E, 2P "4kIN (B.34)
k--O

with an inverse given by

1,, N-I irkN
= -i dj(m) e2ik/N (B.35)

The formula for expressing the wavelet coefficients in terms of the Fourier
coefficients is easily obtained. From (B.19) we have

dj.k = g(t) Oj,k(i) dt.

which, after using (B.2) and reordering, gives

=i~ b,. 10 e' O"jk,(t) dt (B.36)

Go
djk=- (B.37)

and, from (B.24), the scaling function coefficient is given by

ck = bo = c. (B.38)
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An alternative derivation of (B.37) is

di,k = DTFT {b(6 ) n (B.39)

where the discrete-time Fourier transform is defined by

DTFT{z.) = i(f) = z - "  (B.40)

and the inverse is
=, L = ()•e 2"flI df. (B.41)

These are the basic relationships between the Fourier transform and wave-
let transform. Equation (B.33) relates the Fourier series expansion coeffi-
cients of g(t) to the Fourier transform of the fundamental wavelet and the
DFT of the wavelet expansion coefficients of g(t). Equation (B.39) expresses
the wavelet expansion coefficients of g(t) in terms of samples of the DTFT
of the product of samples of the Fourier transform of the basic wavelet and
the Fourier series coefficients.

In practice, a band limited signal sampled at the appropriate rate implies
a finite sum in (B.33) that corresponds to the finest scale of j = J and the
Fourier series is likewise finite. The independent variable f is frequency in
Hertz or cycles per second, d(m) is periodic with period N = 2j, and 1(f) is
periodic with period one. Clearly, the DFT or its inverse can be calculated
with the FFT [1].

Energy and Parseval's Theorem

Orthonormal basis systems allow direct calculation and interpretation
of the energy in a signal partitioned in both the time and the expansion
domains. Parseval's theorem for the Fourier series (B.2) states

a g(t)l2 d, = E Ib12. (B.42)

The "power" in a signal is proportional to the square of the signal (e.g.
voltage, current, force, or velocity) and, therefore, the energy is given by
the integral of the square of the signal magnitude. Parseval's theorem states
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how the total energy is partitioned in the frequency domain in terms of the
partition provided by the the orthonormal basis functions. For the general
wavelet expansion of (B.17), Parseval's theorem is

Lq(t)12 di- Ic1l2 + Go 0 12 (B.43)
i--co j-O kw-oo

with the energy in the expansion domain partitioned in time by I and k and
in scale by j. For the case of periodic functions, the relationship reduces to

J0 Lq(t)12 dt = IciI2 + OO 2j (B.44)

j=0 k-1

One can show that 1 (f)I --+ 0 as f -- 0 and also as f --+ o. Therefore,
there will be a band of frequencies where most of the energy in (f) is
concentrated. Likewise, for many signals, the energy will be concentrated in
a region of the (j, k) plane. Because of this concentration and using (B.33),
the energy of the signal g(t) at frequency n and at scale j and time k is
approximately measured by

I2-j 1& (_I) 12jd, 1
2  (B.45)

If most of the energy in (f) occurs around frequency fo, then fo = n/2 j

relates the dominant Fourier frequency fo to the dominant wavelet scale j.
Scale and frequency are independent primitive concepts, but the selection
of a wavelet basis establishes a connection between them, and the results of
this chapter allow one to move between the two descriptions, using the one
most appropriate for a particular problem. The simple partitioning of the
energy content of a signal among frequencies has been generalized to include
the parameters of time and scale. In addition, we have at our disposal the
choice of wavelet systems, which is controlled by the choice of ak in (B.7),
and determines the detailed nature of the relationship between frequency and
scale.

I



B.3 Computational Complexity of the Wave-

let Approximation to the Fourier Trans-
form

This section is concerned with the computational efficiency of wavelet-based
approximations to the Fourier Transform. The computational cost for several
wavelet approximations of the Fourier transform are presented and compar-
isons are made with the computational complexity of the FFT.

In the most applications, the size of the data set is the determining factor.
We will refer to a technique's asymptotic complexity as representative of
how quickly the number of computations grows as the problem size, N, in-
creases. Comparisons with the FFT are natural here, since the FFT is a
commonly used and well understood algorithm. We consider wavelet trans-
forms which resolve to sub-band frequency components in part or perhaps
all of the signal bandwidth. No attempt will be made to assign a value to a
particular scheme, since the level of approximation appropriate for a given
application can only be determined by extensive experiments. The quality of
the approximation varies from approach to approach, and many simple and
consistent optimizations can be made, but usually require specialization to
a particular set of circumstances.

The simplest, and also least accurate technique for estimating the DFT
of a signal is a direct, balanced tree approach with filters optimized for sharp
out-of-band rejection. Typically the Daubechies wavelets are used for this
approach, although slight improvements in the quality of the results are pos-
sible with other choices.' The computational complexity of pure wavelet
methods are analyzed in section 2.5.

Additional improvements in the quality of the results and the speed of
computation is possible when full frequency resolution within a limited sub-

'Real wavelet filters have spectral characteristics which are conjugate-symmetric, and
these would combine large and small frequencies in the same band. To avoid this aliasing,
a modification was made to the analysis and synthesis filters. Simply put, the filter
characteristics were "rotated" so that, for a full bandwidth complex signal, whose Fourier
transform has the full 2N degrees of freedom, the low-pass side of a single analysis stage
captures the lower half of the spectrum and the high pam the upper. In the real can,
the Fourier transform is conjugate-symmetric, the "full bandwidth amounts to only f./2,
half the sample rate, and "low-frequency' is then interpreted as being f./4.
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band is the desired result. This is accomplished by using the wavelet trans-
form to separate sub-bands, and then using an FFT on the data within the
band to reconstruct a "local" approximation to the "full" Fourier transform.
This can be done either (1) solely within that band, or (2) throughout the
entire bandwidth. If the sub-bands used in such a reconstruction capture
a significant fraction of the total energy contained in the signal, excellent
approximations can be constructed quite cheaply. Notably, the locations ofj peaks within bands are properly located and reconstruction away from edges
of sub-bands is quite accurate. The complexity of such a technique is:

I OPS = a(K)N(1 - R) + NR(3 + log(NR)) + RN (B.46)

where

I* N = the number of data points;

9 K = the size of the wavelet filter (assumed to be constant throughout
the procedure;

* R = the portion of the bandwidth of the signal which is resolved (as-
sumed to be 1/2L for some L).

For this estimate we assume that the reconstruction is done purely in-band,
and only a single band is used (i.e., we don't expand further than necessary
to locate the energy, since that is wasted work if we truly want the DFT).

Figure B.2 shows the results of this calculation superimposed on the re-sults for a straight wavelet approach. The tightly clustered lines represent
the hybrid case, and clearly show a usable advantage (i.e., reasonable length
filters are justified) over both the FFT and the straight wavelet methods for

problem sizes starting around 64 data points.
In addition to the results stated there we note that significant improve-

ments may be made by combining these methods with phase-unwrapping in
order to move the "mass" of the return to the region of best filter perfor-
mance, namely zero frequency for real filters and f = f./4 for the "rotated"
filters.

The approach of relocating the center of the "target" frequency band is
the essence of the phase unwrapping technique, where the centroid is moved
to the center of the DC or zero frequency band. Real Daubechies wavelets
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Figure B.1: Tree Structure for the Hybrid Wavelet-Fourier Transform

Method.
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Figure B.2: Computational Complexity of the Wavelet Transform vs. the
FFT: Filter Length vs. N for equivalent complexity for various fractions of
the total bandwidth (R) with the addition of the case when the FFT is used
to perform the final frequency analysis in a subband

have optimal performance at D.C and minimum aliasing. Phase unwrap-
ping carries an overhead of N complex multiplies per N input points. In
addition, calculation of the FFT for in-band components takes R additional
operations while calculation of the entire FFT from inband components takes
approximately N additional computations. Neither of these has a significant
contribution to the total computation for large problem sizes, since both are
overwhelmed by the O(n log2(n)) behavior of the DFT's. The number of
operations is then:

OPS = N + RN + aN(I - R) + NR(3 + log(NR)) (B.47)
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Figure B.3 shows the trade-off between this method and an FFT on the
full problem, reflected in the allowable filter size for equivalent quantities of
computations.
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Appendix C

Phase Unwrapping

In this section we describe a method for preprocessing MMW radar data to
concentrate the target energy into the largest scale wavelet coefficients. It
is called phase unwrapping. It can be used to process radar fine range data
from phase history data sequences whose bandwidth is less than one half the
sampling rate.

This section has the following objectives:

" to describe the phase unwrapping algorithm

" to describe a method of radar imaging based on combining phase un-
wrapping with the one-sided "Mallat" algorithm

" to present numerical examples using actual radar phase history data

The phase unwrapping algorithm is based on the topological concept of
winding number. Let z : [a, b --o C be a differentiable complex valued
function. Define the winding number of z over the interval [a, b] by

W(z, a, b) = J Real(w(t)/z(t))dt, w = dzlidt. (C.1)

Hence W(z, a, b) represents the amount of angular winding about 0 (in
the counterclockwise direction) of the point z(t) as t moves from a to b. If z(t)
represents (interpolated) phase history data formed from a rough reflector
(several scatterers per resolution cell) then it is generally understood that
z(t) may be approximately modelled by a complex Gaussian random process
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Figure C.1: Radar Centroids for M60 Tank Target

having power spectral density function I(y). Furthermore, I represents the
expected value of li(y) 2 where i denotes the Fourier transform of z.

The expected value E(W) of W(z, a, b) equals 2r(b-a) times the centroid
of I, thus E(W) = 2w(b - a) J I(z)z dz/ J I(z) dz. (C.2)

The factor 2r arises because of its appearance in the definition of the Fourier
transform.
a The radar centroids and phase centers were calculated for 2000 different
aspect angles of the M60 tank target to evaluate the stability of the phase un-
wrapping algorithm. Figure C.1 plots the results of the centroid calculations
and figure C.2 plots the results of the phase unwrapping method. Statistical
analysis of these two sets of data reveals that the mean difference is 0.33
range cells and the standard deviation of the difference is 1.32 indicating a
slight bias but otherwise very consistent results. The correlation coefficient r
between the two sets of data is 0.9986 indicating that the phase unwrapping
method is a near perfect predictor of the true radar centroid.

I The phase unwrapping algorithm consists of two parts:

1. estimate the total phase winding of a phase history function z(t) from
its sample values zk,

2. remove this phase winding by multiplying z& by an appropriate complex
sinusoidal sequence.

89



6o Phase Center
M60 Tank L- L Polaitation

50

t 30

10

0 200 400 600 800 1000 1200 1400 1600 1800
ReCord Number

Figure C.2: Phase Centers Calculated by Unwrapping Method for M60 Tank
Target

30. 1200

20 1000

10So

-10 400-2 2t~t 00

-30 - 4 aI OL11 I 9N1
0 10 20 30 40 50 60 0 to 20 30 40 50 60

Had Compowtit Modulus of Fouier Transfrm

Figure C.3: Raw Range Data and DFT for Trihedral Target

30. 1200

20-0

10. 600

-0 400

-20- 200

-30-t l 01 11 ~ 01I-IS4m4S
0 10 20 30 40 so 60 -30 -?O.,_, .o, , , 30

R (Routed by 30 oile)

Figure C.4: Phase Unwrapped Data and DFT for Trihedral Target
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Figure C.6: Phase Unwrapped Data and DFT for M60 Tank Target

I The first step requires estimating W(s, a, b) 'k=&-7 W(z, k, k + 1) from
sample values zk under the assumption that the bandwidth of z(z) is less
than half than the sampling rate. In this case either zk or (-1)kzk is a low
frequency content signal dk. Let ak denote the angle change between dk+l and
dk. Then the average magnitude of ak is less than 90 degrees. This criteria3 can be used to select d = z, or d = (-1)"zk. Furthermore, ak (nearly
always) represents either W(z, k, k + 1) or -7r/2 +W(z, k, k + 1). Therefore,
W(z, a, b) " I.ak if dk = zk else W(z, a, b) z (b -a)r/2 - ak. Let

W denote the total phase winding.
The second step consists of multiplying zk by the sequence e- w/(b - ) to

obtain Sk = zke - w / (' - ° ). By the assumptions on zk and by (C.2), Sk has a
low frequency content.

To form a radar image from Zk apply the following steps:

I
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Figure C.7: Comparison of Approximation Error for Trihedral Target for
Original and Phase Unwrapped Data

I. estimate W from zk,

2. compute Sk = zke - iw l(&- ),

3. apply the one-sided recursion method to Sk to form a radar image,

4. if desired, translate this image W/(2r) pixels to the right to locate the
image in the correct position.

These three steps yield an approximation of the radar image that is formed
by computing the (Discrete) Fourier transform of zk.

Figures C.3 and C.5 are plots of the (raw) real components and DFT for
a calibration target and the M60 tank target. Note the oscillatory behavior
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of the raw radar data. The results of "phase unwrapping" the radar data for
these targets are presented in figures C.4 and C.6. In these figures note the
dramatic reduction of oscillatory behavior which allows these function to be
well represented by only large scale wavelet terms. There is essentially no
loss of shape information caused by the phase unwrapping process indicating
that it can be used to reduce the computational complexity without adding
any significant artifacts.

9
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Appendix D
I

Martin Marietta Radar DataI and Pulse Compression

I Processing
I

This section examines the problem of radar range profile processing that
may be amenable to solution by employing wavelet analysis in addition to or
in place of conventional Fourier-based analytical methods. The unclassified
radar detection processing problem is discussed in detail by Einstein [3] and

SSkolnik [6].
The problem of obtaining sufficient target signal-to-noise ratio for MMW

radar systems with low transmitter power is solved by increasing the duration
of the transmitted waveforms, thereby increasing the transmitted energy.
Conventional "pulsed" radar systems have their range resolution determined
by the pulsewidth of the transmitted waveform and increasing the pulsewidth
reduces the range resolution. This limitation is overcome by coding the
transmitted waveform such that processing (i.e., matched filtering) in the
receiver can recover compressed pulse information with an equivalent pulse
duration approximately equal to the reciprocal of the spectral bandwidth
of the modulated long pulse duration waveform. There are several pulse
compression methods available (see [6], §10) however, here we will focus on
the problem of processing time-frequencrcoded waveforms.

9
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D.1 Time-Frequency Pulse Compression
I A range finding radar transmitter emits frequency pulses of electromagnetic

energy 
of the form'

u(t) =-(..+..() (D.1)

where fk is the (selectable) constant frequency, ek is an arbitrary phase angle,
and Ok(t) represents the phase drift of the oscillator with respect to the
constant frequency fk as a function of time. It is conventional to select the

time origin to coincide with the time of emission of the pulse. The emitted
frequency will be assumed to serve as the standard reference for the return
signal. By definition,

! k() = 0 and kk(O) = 0.dt0

IThe signal reflected from a point target is the original transmitted signal
delayed by the transit time and diminished by spherical spreading and the
complex reflection coefficient of the target point. Thus the return signal has
the form

y(t) = Atu(t - z)e O'  (D.2)

where the targets complex reflection coefficient is

Aid*"

and z is the round trip time from the radar to the target. The range r of the

target is

r = cz/2 (D.3)

I where c denotes the speed of light.
Upon reception, the reflected signal is mixed with the complex conjugate

of the emitted signal to provideI
v(t) = ylt)u(t) = Aei''u(t - z) x U(t) - Ate - (2 h(t -)+&(f) (D.4)

where %M-'" denotes the complex conjugate of u(t).

"'j denotes v-T.

I
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A pulse of finite duration will attenuate the return: if the pulse shape
function is t " S(t), then the return will be multiplied by S(t - z).

In accordance with Huyghens' principle, a distributed target will produce
a return that is the superposition of the point returns. If p(z) represents the
complex scattering profile (i.e. coefficient) of the target and 9(z) represents
the transmitted pulse shape, then the received signal due to a differential

scattering element p(z)dz located at range delay time z will be

dE(fk, t) = p(z)3(t - (D.5)

and the received voltage (prior to mixing with the reference signal) is

I E(fk, t) =e( 2 t8h) f p(z)S(t _ X)ej(2 1 1 hh(t ))d. (D.6)

Einstein [3] shows that (t - z) = 0. With this assumption, and after
mixing with the reference signal, the complex voltage at the output of the
detector beco m esf 

X St _ ), 2rf
I| V(f,, t) = e - jf(' / h , p(z)s(t - z)e- 2 1'1 dz. (D.7)

Define 0
D Q(fk, t) = p(z)s(t - X)e-J2rf'Idz. (D.8)

Then the Fourier transform

q(z, t) := Q(fk, t) = p(z)s(t - z) (D.9)

Irepresents the scattering profile p(z) of the target, weighted by the pulse

shape s(t - z).
Radar returns from stepped frequency pulse trains may be processed ei-

ther coherently or noncoherently. Coherent processing consists of calculating
the Fourier transform of the N coherently detected complex pulse returns
from each range cell, where N denotes the number of pulses in the train.
The output is a "high resolution" range profile of the scatterers within the
range cell.

Noncoherent processing consists of calculating the Fourier transform of
the square of the magnitude of the of the pulse returns from a given range

9
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cell, and produces the autocorrelation of the range profile. In both cases
the range resolution is determined by the total frequency spread of the pulse
train.

Coherent Processing

For coherent processing q(zt) is realized as the Fourier transform of

QU, 0), i.e.

q(x,t) = J Q(f, t)eS'Mfrdz. (D.1O)

This is approximated by ( from D.6)

V(ft)ej 2-fzdx. (D.11)

assuming that the phase drift Ot4(t) of the oscillator is small.
When using a frequency-diverse pulse train the measurements of V(f, t)

are not made over a continuum of frequencies but only for a discrete set ofI frequencies {f&1. Thus the continuous transform must be approximated by
a discrete (and finite) transform.

For this case Einstein [31 shows that

"The Discrete Fourier Transform (DFT) is a matched filter
for the returns from a frequency-diverse pulse train, under the
following conditions:

1. Each of the pulse returns is coherently detected by using the
transmitted carrier for a given pulse as the coherent reference
for that pulse. Thus, a different coherent reference is used
for each pulse in the train.

i 2. The spacing between the different frequencies at which the
pulses in the train are transmitted is uniform.

i 3. There is no relative radial motion between the target and

the radar during the transmission of the pulse train.

4. There are no nonlinear differential phase shifts through the
radar system between the different carrier frequencies."

II



Item #2 is required for application of the DFT to recover a time domain
signal from the frequency return signal data. This applies to both coherent
and noncoherent processing.

Noncoherent Processing

Noncoherent processing consists of calculating the Fourier transform of
the square of the magnitude of the of the pulse returns from a given range
cell, and produces the autocorrelation of the range profile. Noncoherent
processing offers the following advantages and disadvantages compared with
coherent methods:

" The transmitter frequency stability requirements for noncoherent pro-
cessing are two or three orders of magnitude less than for coherent
processing.

" Noncoherent processing is much more robust than coherent processing
with respect to relative motion of the target and the radar.

" Coherent processing provides target-to-clutter contrast that is superior
to noncoherent processing.

This study does not consider the role of wavelet based signal analysis
methods for noncoherent radar data processing.

D.2 Characteristics of the Millimeter Wave
Radar Data used in this Study

Millimeter wave radar data was gathered on a test range
by Martin Marietta. The radar return signals were co-
herently detected and the complex data recorded into 3
data sets.

1. Calibration radar reflectors which consisted of an array of two dihedral
reflectors and one trihedral reflector. These data were taken with every
target measurement, but only 50 records were provided for analysis

2. M60A3 Tank
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Figure D.I: Real Component of Trihedral Calibration Data

3. M35 Truck.

Figures D.1 to D.6 provide examples of the raw range data and the DFT for
the calibration reflectors. Figures D.7 to D.9 are examples of data taken of
a military target vehicle, an M60 tank in this case.

The vehicles were located atop a rotating platform adjusted such that the
depression (look-down) angle was 15 degrees. The platform rotated at about
1 degree per second.

The data sets for the M35 truck and M60 tank consist of 14,000 records
each. A record consists of four complex valued vectors of length 63. Each
vector corresponds to a single set of 63 transmitted sinusoidal waveforms
(either L or R polarized). The first and second vectors in each record cor-
respond to a L polarized transmission followed by demodulation with a left
and right (respectively) polarized waveform. The third and fourth vectors in
each record are the data for a R polarized transmission. Thus each record
contains, in order, polarization modes LL, LR, RL, and RR.

The time between consecutive sets of transmitted waveforms (i.e. a pair
of consecutive rows) equals 6.3p seconds, therefore, each data set represents
176.4 degrees of rotation.

The frequencies within each transmitted set span a bandwidth of B = 500
Megahertz and decrease linearly. Thus the transmitted waveform for the
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Figure D.2: Imaginary Component of Trihedral Calibration Data
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Figure D.3: Modulus of DFT of Trihedral Calibration Data

101



30

20

0

-10

-20 -- -- -=- - _ -

-30 --

0 10 20 30 40 50 60

Figure D.4: Real Component of Dihedral Calibration Data
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Figure D.5: Imaginary Component of Dihedral Calibration Data
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Figure D.7: Real Component of M60 Tank Data (near -20*)
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Figure D.9: Modulus of DFT of M60 Tank Data (near -20 °)
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k-th column within a given pair of rows equals sin(2rfV - (k - 62)B/63]t)
where f, equals the reference frequency.

For both vehicles, the angle 0, measured from head-on (0 degrees) coun-
terclockwise, as a function of record index k is given by

I (k) = ak + b. (D.12)

For the tank a = .0128 and b = -23.9, thus the angle ranges 2 from -24
degrees to 156 degrees.

For the truck a = .0128 and b = -34.6, thus the angle ranges from -35
I degrees to 145 degrees.

2The data was divided into -blocks" of 2000 records for cam of shipment on floppy
disks. It was discovered late in the study that one %blowk of tank datat was corrupted.
Theme data were simply skipped leaving 12,000 records of M60 dats.
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I Appendix E

Baseline Target Extent
I Calculation Method
I

This section details the baseline method for extracting target extent from a
I phase history data sequence zk.

1 1. compute the Discrete Fourier Transform (DFT) 4 of the complex radar
data,

I 2. compute the squared modulus of the transform results [uk1 ',

3. establish a threshold T > 0,

4. compute an estimate of the noise floor. Since the data provided does not
have any "empty" range cells, the average power A calculated from the
16 range cells furthest away from the target, was used as the estimate
of the noise floor. This was the best estimate available since the true
target position was know to be in the center of the array k. The first
8 and the last 8 range resolution cells were used to estimate A,

5. compute the indices I, and '2 of the first and last entries of ik 12 that
j exceed T x A,

6. compute target extent as 2 - 1 + 1.

I
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